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It is desirable to create a convective flow representation of electromagnetic
fields. This allows well-established time-dependent reactive flow models to ac-
commodate the effects of space charge. This concept builds on a simpler case
which I published in Phys Rev E v66 026402.

Beginning with Ampere’s Law:
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Multiply Gauss’ Law by a pseudo-velocity, ~VE :
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Add these two equations to get:
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Likewise, take Faraday’s Law:
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Multiply Gauss’ Law for magnetism by a factor (magnetic pseudo-velocity) ~VH :
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Add them to get:

∂ ~H

∂t
+ ~VH∇ · ~H = − 1

µ
∇× ~E (6)

where ~VE = ~VE(~r, t) and ~VH = ~VH(~r, t) are chosen for stability and accuracy,
without sacrificing time step size.

All the while, continuity is also being solved by the other transport equations:

∂ρ
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+∇ · ~J = 0 (7)

1



The result is that “infinite” speed of propagation implied by Gauss’ law is
eliminated. Instead, characteristics at speeds of |~VE | and |~VH | are created.

If both ~E and ~H are needed in the simulation, then there is an additional
characteristic at c = 1/

√
µǫ0. In many cases, it should be possible to re-define

µ to make c much smaller, so as to not introduce a restrictive time-step limit.
That is, dt = dx/c can be made just a bit smaller than the fastest physcial
process that must be followed.

The usual approximations for magneto quasi-statics will lead to non-physical
results with this representation. In particular, if ~H is ignored, or if a scalar elec-
tric potential is assumed, a proper steady-state value for ~J can not be obtained
in general. Some geometries (axially uniform cylindrical symmetry, for exam-

ple) may allow for the elimination of one component of ∇ × ~H in Equation 3,
which greatly simplifies those cases. However, in general, one might be able to
re-define c (as described above) in order to accomodate the general case without
introducing excessive computational burdens.

Stability of these equations is easily examined. For example, taking the
divergence of Equation 3 gives:
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where D = ∇ · ~E.

Linearization of this, with ρ → ρ+ ρ̃eαt+j
~β·

~r, etc. gives:
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The second term is just the linearization of Gauss’ law, and would be present
without the time-dependent modifications. The first term represents the growth
factor introduced by the convective form of the equations. Any deviations from
zero of the second term, due to round-off or truncation errors, are subject to
growth at the rate described by the first term. In order to suppress the growth
of these errors, it is necessary for α to have a negative real component when the
first term is set equal to zero. The stability condition is thus:

∇ · ~VE > 0 (10)

This condition will ensure that numerical errors will not grow as a result of
inclusion of the convective terms. By starting with initial conditions which
satisfy Gauss’ law, and by proper choice of a stable ~VE , errors in the balance
prescribed by Gauss’ law will not be allowed to grow. A similar condition exists
for the magnetic pseudo-velocity, ~VH .
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