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The elliptic representation of the Boltzmann equation[1] has been shown to
provide a useful approximation for the determination of the distribution function
by making some heuristic assumptions about its angular dependence, and is
valid under extremes of anisotropy. Subsequently, it has been shown[2] that an
alternate expression of this approximation, explicitly in terms of anisitropy, can
be derived.

For the sake of completeness, this anisotropic-based expression is, in the
general case, shown here:
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and X = T'/n = £1/(2f,) is the quantitative anisotropy vector (X = |X]). This
formulation will be referred to as the “X” formulation, and has advantages as a



basis for discretization for the suppression of numerical artifacts. In particular,
the generation of high-spatial-frequency oscillations in a low-dissipation time-
dependent numerical scheme is largely mitigated by discretization according to
the “X” formulation.

The main difficulty with the X formulation is that the range of |X| is lim-
ited to [0,1]. The inevitable truncation error of discretized numerical schemes
will lead to violations of these limits. That is, although the continuum equa-
tions serve to limit the extent of \ﬁ|, computationally a limit is difficult to
enforce. Certainly artificial limits can be placed, and are somewhat justified by
knowledge of the properties of )_i, but these would present a deviation from the
otherwise uniform treatment of the governing equation.

A more pleasing technique would be to seek yet another dependent variable
with infinite range to represent the limited range of DZ| One such transforma-
tion is as follows. Define:
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Thus it is very easy to transform back and forth between X and Y. The following
identities are all easily derived:
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where s is any independent variable.
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and these make it easy to transform Equation 1 into a transport equation for
Y:
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If the approximation (‘g) = T is used, although it is not strictly

correct[1], the collision term becomes:
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1 0-d example

In the absence of any spatial dependence, the equation takes on a much simpler
form:
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which is to be solved, along with the usual first equation:
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where n = vn.
Alternately, Equation 12 can be written as:
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If we define: X
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then:
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The limits are:
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It helps to know that:
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at small X.

1.1 Townsend discharge

An inhomogeneous 0-d problem with exponential spatial growth of fundamental
quantities (n, I') can be treated with the unbounded anisotropy (“Y”) formula-
tion. The equations are:
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where « is the Townsend coefficient, as defined in [1]. A similar term must be
added to the anisotropic equation, derived from those spatial derivative terms
which involve derivatives of fundamental quantities:
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1.2 Pulsed Townsend discharge

Another inhomogeneous 0-d problem assumes exponential temporal growth of
fundamental quantities (n, I') and is treated with the unbounded anisotropy
(“Y”) formulation as follows:
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where 3 is the exponential growth rate, as determined by the net ionization
rate. The anisotropic equation requires no such term:
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